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ABSTRACT: Wafer-level testing is crucial for process monitoring,
post-fabrication trimming, and understanding system dynamics in
photonic integrated circuits (PICs). Waveguide tap couplers are
usually used to provide testing access to the PIC components.
These tap couplers however incur permanent parasitic losses,
imposing a trade-off between PIC performance and testing
demands. Here we demonstrate a transient tap coupler design
based on optical phase change materials (O-PCMs). In their as-
fabricated “on” state, the couplers enable broadband interrogation
of PICs at the wafer level. Upon completion of testing, the tap
couplers can be turned “off” with minimal residual loss (0.01 dB) via a simple low-temperature (280 °C) wafer-scale annealing
process. We further successfully demonstrated transient couplers in both Si and SiN photonics platforms. The platform-agnostic
transient coupler concept uniquely combines compact footprint, broadband operation, exceptionally low residual losses, and low
thermal budget commensurate with post-fabrication treatment, thereby offering a facile solution to wafer-level photonic testing
without compromising the final PIC performance.

KEYWORDS: optical phase change materials, tap couplers, photonic integrated circuits, wafer-scale testing, directional coupler,
insertion loss

Photonics integrated circuits (PICs) have witnessed
tremendous strides in the past decade, opening a plethora

of applications including optical communications,1,2 sensing,3,4

quantum optics,5,6 and neuromorphic computing.7,8 While
individual photonic devices such as ring resonators and
modulators have been studied extensively, circuit-level system
engineering has become the focal point in PIC research to
impart complex capabilities.9,10 Nowadays, state-of-the-art
PICs contain hundreds if not thousands of devices.11,12 In
addition to the standard input/output ports, such a complex
circuit generally benefits from having multiple intermediate
interrogation points to enable a subset of the circuit to be
tested, for instance, to monitor the state of the optical elements
during operation and post-trimming or to gain insight into the
system dynamics of the circuit. Furthermore, wafer-level
testing is at the heart of chip manufacturing processes, since
it allows device failure to be detected in the early stage of
manufacturing. Built-in test structures in PICs are essential for
maximizing wafer yield and reducing production cost.13

Currently, wafer-level testing solutions rely on coupling a
small proportion of light out from the PIC with waveguide tap
couplers, which contributes to permanent total optical loss of
the system.14 PIC designers are therefore constrained by the
trade-off between minimizing optical loss and ensuring

adequate accessibility to testing locations. To solve this
problem, various direct probing methods or erasable testing
structures have been implemented.15−18 Direct probing
methods rely on evanescent or diffractive excitation of light
by placing optical probes in close proximity to the waveguide
surfaces.15,16 To apply these methods, openings must be
etched into the waveguide claddings to expose the waveguide
core at testing sites. This technique induces excess scattering
loss and might not be practical for certain PIC designs and/or
packaging configurations. An alternative approach uses turning
mirrors attached to the end facets of fiber or planar waveguide
probes.19,20 The approach is however limited to testing
through edge couplers of PICs. Topley et al. pioneered a
seminal wafer-level testing paradigm involving gratings17 and
directional couplers18 created by germanium ion implantation
in Si, which can be subsequently erased via annealing after
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testing. Nonetheless, moderate loss (0.13 dB per coupler)
remains after the erasure step, and the erasing process requires
a high local temperature above 500 °C, mandating serial laser
annealing or integrated microheaters21 rather than wafer-scale
annealing. Finally, no similar solutions are available in non-Si
platforms such as SiN or III−V photonics.
In this Letter, we present a new transient coupler concept

for wafer-level photonic testing. The device harnesses the large
refractive index change of an optical phase change material (O-
PCM), Ge2Sb2Se4Te1 (GSST),

22−24 during phase transition to
optically modulate a directional coupler.25,26 In its “on” state,
the coupler acts as a tap to extract a fraction of optical power
from the PIC. Once the testing is complete, all transient
couplers on a wafer can be switched “off” using a low-
temperature (280 °C) annealing process, leaving negligible
(0.01 dB) residual optical loss. Since the coupler “off” state
corresponds to the thermodynamically stable crystalline phase
of the O-PCM, the couplers have no adverse impact on the
long-term stability or performance of the PIC. Alternatively,

the couplers can also be individually turned off or reactivated
via local laser heating or electrothermal switching27−30 to suit
different testing needs.

■ DEVICE DESIGN

Our transient coupler design capitalizes on two important
characteristics of chalcogenide O-PCMs to serve the wafer-
level testing application. First, they exhibit a large refractive
index contrast (Δn > 1) between their amorphous and
crystalline states,31 which not only facilitates a compact device
architecture but also enables a “non-perturbative” design
paradigm to enhance the optical contrast and lower optical
loss.23 Second, the nonvolatile nature of the material implies
that the coupler is self-holding and does not necessitate power
input when remaining at either the “on” or “off” state.32 For
this application, we chose GSST as the O-PCM, since it claims
a large refractive index contrast (Δn = 1.8 at 1550 nm) while
showing significantly reduced optical attenuation compared to
the archetypal Ge2Sb2Te5 (GST) alloy.22 These desirable

Figure 1. (a) Sketch of the transient tap coupler device. (b) Schematic device configuration of the coupling region. (c, d) Mode profiles of the
coupling region when the O-PCM is at its amorphous state (c) and crystalline state (d).

Figure 2. (a) FDTD simulation result of the electrical field magnitude profile when the O-PCM is at its amorphous state (upper) and crystalline
state (lower). (b) Simulated transmission at 1550 nm in the main waveguide and tap waveguide as a function of coupling length. (c) Simulated
coupling efficiency at the amorphous state and insertion loss at the crystalline state for a coupling length of 50 μm.
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attributes of GSST have previously been exploited in low-loss
on-chip optical switch designs.23,33−35 In addition to their
excellent optical properties, chalcogenide O-PCMs are also
uniquely poised for platform-agnostic integration given their
amorphous structure and low processing temperatures.36,37

Our design of the transient coupler follows the “non-
perturbative” principle. In the amorphous state, the two
waveguides in the couplers are phase matched, permitting part
of the light in the main PIC to be transferred to the testing
waveguide. In the crystalline state, the large refractive index
increase of O-PCM disrupts the phase matching condition, and
hence, coupling is suppressed.
Here we validate the transient coupler design in standard

silicon-on-insulator (SOI) and SiN platforms to demonstrate
its versatility. The basic device geometry is depicted in Figure
1a. Each tap coupler is comprised of a “main waveguide”,
which is a part of a photonic circuit to be tested, and a “tap
waveguide”, which evanescently couples to the main waveguide
to extract a fraction of light. Figure 1b illustrates the cross
section of the coupling region in a transient tap coupler. The
waveguides have the same core height, and their widths are
optimized such that their effective indices are identical when
GSST is in its amorphous state. As a result, guided modes in
the two waveguides strongly hybridize, yielding well-defined
even (symmetric) and odd (anti-symmetric) supermodes. The
supermodes are shown in Figure 1c for an optimized SOI
coupler (h = 220 nm, hp = 40 nm, wg = 293 nm, wm = 552 nm,
wt = 493 nm, and wp = 350 nm). When GSST is switched into
its crystalline state, the effective index of the tap waveguide is
significantly altered. The resulting index mismatch between the
two waveguides leads to two isolated supermodes shown in
Figure 1d.
Figure 2a presents the electrical field amplitude profile inside

the SOI tap coupler in its amorphous and crystalline states,
simulated using the 3-D full-vectorial finite-difference time-

domain (FDTD) technique. The coupling efficiency of the
device in the amorphous state can be adjusted by changing the
coupling length. Figure 2b shows the optical power in the two
waveguides as a function of the coupling length. When the
coupling length is 50 μm, the coupling efficiency is 11% at the
amorphous state. Figure 2c shows that the coupling between
the two waveguides exhibits a broadband response, and thus,
the device can be applied to monitor broadband spectral
information. On the other hand, when GSST is crystallized, the
input light remains in the main waveguide. Hence, the tap
coupler is turned “off” at the crystalline state, and the minimal
mode overlap with the usually more lossy crystalline O-PCM
ensures low insertion loss. As shown in Figure 2c, the insertion
loss remains below 0.02 dB within the entire C-band
wavelength range. The switching contrast ratio, defined as
the power coupling efficiency in the amorphous state over that
in the crystalline state, is approximately 37.

■ EXPERIMENTAL RESULTS

The tap coupler devices were fabricated on an SOI substrate
with a 220 nm Si layer. The waveguides were patterned via
electron beam lithography, followed by reactive ion etching.
The GSST patterns were fabricated on the tap waveguides via
electron beam lithography and a lift-off process. GSST films
were deposited via single-source thermal evaporation following
our previously published protocols.22 Stoichiometry of the
GSST film was confirmed by wavelength-dispersive X-ray
spectroscopy (WDS) measurements.
The devices were measured using a home-built grating

coupler system in conjunction with an optical vector analyzer
(LUNA Technologies OVA-5000) with a built-in external
cavity tunable laser. After measuring the tap couplers in the
amorphous state, the GSST-integrated devices were crystal-
lized by an annealing process on a hot plate at 280 °C for 30
min in an inert gas atmosphere.

Figure 3. (a) Sketch of the device geometry for testing insertion loss when the O-PCM is at the crystalline state. (b) SEM image of the erasable
directional couplers, cascaded on the main waveguide. The inset shows the zoomed-in image of the coupling region. Scale bars: 2 μm and (inset)
300 nm. (c) Measured coupling efficiency at the amorphous state and insertion loss at the crystalline state. (d) Sketch of the device geometry for
validating broadband testing capability. (e) Transmission spectra at the main port and tap port after a ring resonator device. The transmission
spectra are each normalized to their respective peak values.
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In the amorphous state, coupling efficiency is calculated by
normalizing the transmitted power at the tap port over the
transmitted power of a single waveguide without a coupler.
Experimental quantification of the residual loss in the
crystalline state, on the other hand, is considerably more
difficult given the very small loss. We therefore designed a test
structure illustrated in Figure 3a, where 85 tap couplers couple
to the same waveguide to ensure precise loss measurement.
Figure 3b shows a scanning electron microscope (SEM) image
of a part of the structure in Figure 3a consisting of cascaded
SOI transient tap couplers. To eliminate scattering loss at
waveguide junctions between GSST-coated and uncoated
sections, the end of the GSST patch is inverse tapered to
create a smooth transition.
Coupling efficiency at the amorphous state and insertion loss

at the crystalline state for the SOI couplers are plotted in
Figure 3c. The coupling efficiency stays within the range 4.3−
6%, and it reaches approximately 6% at 1550 nm wavelength.
The insertion loss is 0.01 dB (∼0.25% loss) at 1550 nm and
remains below 0.025 dB throughout the measured wavelength
range. The switching contrast ratio is ∼24, which is lower than
the simulated value of 37 but still well sufficient to yield low
residual losses.
A model structure shown in Figure 3d which comprises an

SOI tap coupler placed downstream from a ring resonator was
used to demonstrate operation of the tap coupler. In the
amorphous state, baseline-corrected transmission spectra at the
main port and the tap port are overlaid in Figure 3e. The
excellent agreement between the two spectra attests to the
capability of the tap coupler for broadband optical monitoring
in PICs.
The transient coupler concept is similarly validated with an

SiN platform. Details of the SiN device modeling and
characterization outcomes are discussed in the Supporting
Information. The SiN tap coupler exhibits a coupling efficiency
of 20−25% in the amorphous state and a residual insertion loss
of 0.09−0.13 dB (2−3% loss), corresponding to a contrast
ratio of 11.7. The result indicates that the transient coupler
design is generically applicable to different integrated
photonics platforms.

■ DISCUSSION
As a vehicle to enable wafer-level testing of PICs without
incurring excess loss, the transient coupler based on O-PCMs
features several advantages: record low residual loss, broad-
band operation, small footprint, platform-agnostic integration,
and versatility. Once wafer-scale testing is finished, all couplers
on a wafer can be turned “off” concurrently via a single furnace
annealing step at low temperatures without disrupting the
performance of other on-chip devices. Alternatively, individual
couplers can also be switched “on” or “off” on demand by
leveraging laser or electrothermally triggered phase transition.
The concept is also generic and can be adapted to other O-
PCM systems besides GSST.38,39

To expedite adoption of the technology, one critical barrier
that must be overcome is the integration of O-PCMs into the
foundry process flow of PICs. Chalcogenide alloys are certainly
no strangers to state-of-the-art memory foundries, which
routinely employ these materials both as the information
storage media and memory cell selectors.40 As a first step
toward integration of O-PCMs into standard photonic
manufacturing processes, we have realized in-foundry process
integration of GSST with Lincoln Laboratory’s 200 mm Si and

SiN integrated photonics line. Seamless integration of O-
PCMs with integrated photonics will qualify the transient
coupler as a promising platform for wafer-level testing.
We also note that the transient coupler represents a unique

use case for O-PCMs. Since the transient coupler can be used
as a one-time programmable device, many material attributes
considered crucial to other applications, such as cycle lifetime,
speed, and switching energy, become hardly relevant. There-
fore, rational trade-offs can be made to enhance the refractive
index contrast or lower the optical loss of O-PCMs for
transient couplers at the expense of these traditionally valued
attributes. This may open up new material design spaces for
engineering of novel O-PCM alloys.
Finally, the architecture discussed herein provides a practical

scheme to realize on-chip variable optical couplers, which may
open up new applications in optical trimming,41 analog optical
computing,8 on-chip optical power distribution,42 and optical
logic gates.43

■ CONCLUSION
In this Letter, a transient tap coupler notion is presented to
facilitate wafer-level photonic testing. This method uses
reconfigurable directional couplers based on optical phase
change materials to extract light at intermediate interrogation
points in a photonic circuit. A subsequent wafer-scale, low-
temperature furnace annealing step optically switches off the
couplers to prevent permanent loss penalty. A record low
residual loss of 0.01 dB is experimentally validated at 1550 nm
wavelength. The proposed coupler design further features
broadband response and a small footprint and is compatible
with integration into different integrated photonics platforms
such as Si and SiN. This testing platform offers a facile route
for integrated photonics manufacturing quality control and
post-production monitoring of large-scale photonic circuits.
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